skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Tsiotras, Panagiotis"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available September 1, 2026
  2. We propose a standalone monocular visual Simultaneous Localization and Mapping (vSLAM) initialization pipeline for autonomous space robots. Our method, a state-of-the- art factor graph optimization pipeline, extends Structure from Small Motion (SfSM) to robustly initialize a monocular agent in spacecraft inspection trajectories, addressing visual estimation challenges such as weak-perspective projection and center-pointing motion, which exacerbates the bas-relief ambiguity, dominant planar geometry, which causes motion estimation degeneracies in classical Structure from Motion, and dynamic illumination conditions, which reduce the survivability of visual information. We validate our approach on realistic, simulated satellite inspection image sequences with a tumbling spacecraft and demonstrate the method’s effectiveness over existing monocular initialization procedures. 
    more » « less
    Free, publicly-accessible full text available July 8, 2026
  3. This work studies the behaviors of two large-population teams competing in a discrete environment. The team-level interactions are modeled as a zero-sum game while the agent dynamics within each team is formulated as a collaborative mean-field team problem. Drawing inspiration from the mean-field literature, we first approximate the large-population team game with its infinite-population limit. Subsequently, we construct a fictitious centralized system and transform the infinite-population game to an equivalent zero-sum game between two coordinators. Via a novel reachability analysis, we study the optimality of coordination strategies, which induce decentralized strategies under the original information structure. The optimality of the resulting strategies is established in the original finite-population game, and the theoretical guarantees are verified by numerical examples. 
    more » « less
  4. We propose a nonlinear hybrid dual quaternion feedback control law for multibody spacecraft-mounted robotic systems (SMRSs) pose control. Indeed, screw theory expressed via a unit dual quaternion representation and its associated algebra can be used to compactly formulate both the forward (position and velocity) kinematics and pose control of [Formula: see text]-degree-of-freedom robot manipulators. Recent works have also established the necessary theory for expressing the rigid multibody dynamics of an SMRS in dual quaternion algebra. Given the established framework for expressing both kinematics and dynamics of general [Formula: see text]-body SMRSs via dual quaternions, this paper proposes a dual quaternion control law that achieves simultaneous global asymptotically stable pose tracking for the end effector and the spacecraft base of an SMRS. The proposed hybrid control law is robust to chattering caused by noisy feedback and avoids the unwinding phenomenon innate to continuous-based (dual) quaternion controllers. Additionally, an actuator allocation technique is proposed in the neighborhood of system singularities to ensure bounded control inputs, with minimum deviation from the specified spacecraft base and end-effector trajectories during controller execution. 
    more » « less
  5. Free, publicly-accessible full text available October 1, 2026